FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

نویسندگان

  • Shin-ya Miyagishima
  • Mami Nakamura
  • Akihiro Uzuka
  • Atsuko Era
چکیده

The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A plant-specific dynamin-related protein forms a ring at the chloroplast division site.

Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plan...

متن کامل

ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2.

Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells ...

متن کامل

Dynamin and FtsZ: Missing Links in Mitochondrial and Bacterial Division

FtsZ forms the cytoskeletal framework of the cytokinetic ring in bacteria, and appears to play the major role in constriction of the furrow at septation. Until recently, FtsZ had been found in every eubacterium and archaebacterium, and was thought to be the major and essential component of the division machine (Erickson, 1997). FtsZ has also been found in chloroplasts (Osteryoung et al., 1998),...

متن کامل

Dynamin and Ftsz

FtsZ forms the cytoskeletal framework of the cytokinetic ring in bacteria, and appears to play the major role in constriction of the furrow at septation. Until recently, FtsZ had been found in every eubacterium and archaebacterium, and was thought to be the major and essential component of the division machine (Erickson, 1997). FtsZ has also been found in chloroplasts (Osteryoung et al., 1998),...

متن کامل

Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014